본문 바로가기

골드90

[백준 11440] 피보나치 수의 제곱의 합 [C] 풀이 n번째 피보나치 수의 제곱의 합은 다음과 같은 규칙으로 구할 수 있다. "백준 11444, 피보나치 수 6" 코드를 사용해 풀이했다. 소스코드 #include #define ll long long const int MOD = 1e9 + 7; ll X[2][2] = {0, 1, 1, 1}; void fibo(ll result[][2], ll f[][2]){ int temp[2][2] = {0,}; for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) for (int k = 0; k < 2; k++) temp[i][j] += (result[i][k]*f[k][j]) %MOD; for (int i = 0; i < 2; i++) for (int j = 0; j.. 2021. 8. 23.
[백준 11443] 짝수번째 피보나치 수의 합 [C] 풀이 짝수번째 피보나치 수에는 다음과 같은 규칙이 있다. "백준 11444, 피보나치 수 6" 코드를 사용해 풀이했다. 소스코드 #include #define ll long long const int MOD = 1e9 + 7; ll X[2][2] = {0, 1, 1, 1}; void fibo(ll result[][2], ll f[][2]){ int temp[2][2] = {0,}; for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) for (int k = 0; k < 2; k++) temp[i][j] += (result[i][k]*f[k][j]) %MOD; for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) .. 2021. 8. 23.
[백준 11442] 홀수번째 피보나치 수의 합 [C] 풀이 홀수번째 피보나치 수에는 다음과 같은 규칙이 있다. "백준 11444, 피보나치 수 6" 코드를 사용해 풀이했다. 소스코드 #include #define ll long long const int MOD = 1e9 + 7; ll X[2][2] = {0, 1, 1, 1}; void fibo(ll result[][2], ll f[][2]){ int temp[2][2] = {0,}; for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) for (int k = 0; k < 2; k++) temp[i][j] += (result[i][k]*f[k][j]) %MOD; for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) .. 2021. 8. 23.
[백준 11778] 피보나치 수와 최대공약수 [C] 풀이 n, m번째 피보나치 수의 최대공약수는, gcd(n, m)번째 피보나치 수와 같다. 구글에 영어로 검색하니 바로뜬다... 이 무슨 "백준 11444, 피보나치 수 6" 코드를 사용해 풀이했다. 소스코드 #include #define ll long long const int MOD = 1e9+7; ll X[2][2] = {0, 1, 1, 1}; ll gcd(ll a, ll b){ return b ? gcd(b, a%b) : a; } void fibo(ll result[][2], ll f[][2]){ int temp[2][2] = {0,}; for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) for (int k = 0; k < 2; k++) temp[i].. 2021. 8. 21.
[백준 2086] 피보나치 수의 합 [C] 풀이 피보나치 수열에는 다음과 같은 공식이 있다. "백준 11444, 피보나치 수 6" 코드를 사용해 a+2-1번째 피보나치 수와 1을 뺀 값에, b+2번째 피보나치 수와 1을 뺀 값을 MOD로 나눈 나머지를 출력해주면 된다. 연산에 사용되는 temp, X를 초기화 해주어야 하며, 나머지간의 연산이기 때문에 음수가 나올 수 있다는 점을 유의하자. 소스코드 #include #define ll long long const int MOD = 1e9; ll X[2][2] = {0, 1, 1, 1}; void fibo(ll result[][2], ll f[][2]){ int temp[2][2] = {0,}; for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) for.. 2021. 8. 21.
[백준 11444] 피보나치 수 6 [C] 풀이 다음과 같이 행렬을 이용해 피보나치 수를 구할 수 있다. "백준 10830, 행렬 제곱" 코드를 이용해 완성했다. 소스코드 #include #define ll long long const int MOD = 1e9 + 7; ll X[2][2] = {0, 1, 1, 1}; void fibo(ll result[][2], ll f[][2]){ int temp[2][2] = {0,}; for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) for (int k = 0; k < 2; k++) temp[i][j] += (result[i][k]*f[k][j]) %MOD; for (int i = 0; i < 2; i++) for (int j = 0; j < 2; j++) .. 2021. 8. 21.